No rays emerged at epicentral distances between 112° and 154°. I then placed a smaller core inside the first core and let the velocity in it be larger so that a reflection would occur when the rays through the larger core met it. After a choice of velocities in the inner core was made, a time curve was obtained, part of which appeared in the interval where there had not been any rays before. The existence of a small solid core in the innermost part of the earth was seen to result in waves emerging at distances where it had not been possible to predict their presence.
Lehmann, I. (1987). Seismology in the days of old Eos, Transactions American Geophysical Union, 68 (3) DOI: 10.1029/EO068i003p00033-02 (full paper)
Read also: Bolt, B. (1994). Inge Lehmann Physics Today, 47 (1) DOI: 10.1063/1.2808386
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS