This way to see the general relativity is directly connected with the embedded diagrams and Flamm paraboloids, the mathematical way to see the spacetime deformations. But this analogy has some problems not only because is inaccurate like all analogies, but also becuase it could be confusing about distorced space and spacetime especially among students. So we can ask: why is the sheet deformed? Because of the weight? This fact implies the use of a circluar argument: usinf gravity to explain gravity! But if the ball isn't in spacetime, where is it?(1)
Despite this objections, I must note that the previous questions have never been exposed in the few activities with the elastic sheet I made, probably because I ever try to explain that the elastic sheet is only an analogy needed to see some particular aspects about gravity. In every case I think that it could be very interesting to use an alternative method to tell spacetime deformation.


Further reading: Deviation of Light near the Sun in General Relativity by Christian Magnan: original version, and archived version.
- Janis, A. I. (2018). On mass, spacetime curvature, and gravity. The Physics Teacher, 56(1), 12-13. doi:10.1119/1.5018679 (4shared) ↩↩
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS