BB-8 is the last
Star Wars' droid introduced in
The Force Awakens. It's a spherical robot with a free-moving head. Now, looking on arXiv, I found
the proposal for SphereX, a new spherical robot for planetary explorations:
Wheeled planetary rovers such as the Mars Exploration Rovers (MERs) and Mars Science Laboratory (MSL) have provided unprecedented, detailed images of the Mars surface. However, these rovers are large and are of high-cost as they need to carry sophisticated instruments and science laboratories. We propose the development of low-cost planetary rovers that are the size and shape of cantaloupes and that can be deployed from a larger rover. The rover named SphereX is 2 kg in mass, is spherical, holonomic and contains a hopping mechanism to jump over rugged terrain. A small low-cost rover complements a larger rover, particularly to traverse rugged terrain or roll down a canyon, cliff or crater to obtain images and science data. While it may be a one-way journey for these small robots, they could be used tactically to obtain high-reward science data. The robot is equipped with a pair of stereo cameras to perform visual navigation and has room for a science payload. In this paper, we analyze the design and development of a laboratory prototype. The results show a promising pathway towards development of a field system.
The litle robot was tested under simulated lunar and martian gravity conditions, and the results are encouraging:
It was observed that as angle of separation between grouser decreases there is increase in average speed of robot and the power consumption remains almost constant. A hopping mechanism was developed for the robot that enables the robot to in theory perform unlimited hops. Currently the system is able to perform a hop of 8-10 cm under simulated Martian gravity. Extrapolating this, we would be able to achieve 16-20 cm hop in lunar conditions. The performance of hopping mechanism has to be improved to achieve the stated mission requirements. Based on power consumption for each hop and maximum power available, it was calculated that the robot would be able to produce maximum 208 hops in a single charge and robot would operate for 35 minutes of continuous hopping. The proposed SphereX design shows a promising pathway towards further maturation and testing of the technology in the field.
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS