The first atomic frequency standard, based on the ammonia molecule (1949).
Inventor Harold Lyons is on the right; Edward Condon, at the age the director of NBS, is on the left.
The story of the atomic clock is really interesting, because starts from a pure research and arrives to an incredible application. First of all we must start from
Isidor Isaac Rabi, who started the studies about the atomic transitions, and we must arrive to
Harold Lyons, who applied the devices developed during 1930s-1940s by Rabi's
team(2), who awarded the Nobel Prize for these studies in 1944
(1), in order to construct an atomic clock.
In particular the key paper is published in 1938,
A new method of measuring nuclear magnetic moment(3)
It is the purpose of this note to describe an experiment in which nuclear magnetic moment is measured very directly. The method is capable of very high precision and extension to a large number and variety of nuclei.
A beam of particles, in the case of the first experiment they used molecules of LiCl, passed through a group of magnets, so that the nuclear spins is decoupled from each other and from the molecular rotation. At this point an additional magnetic field, this time slightly oscillating, is applied such that the spin and the nuclear magnetic moment are redirected, obtaining at the end a sort of frequency's precession
(3).
At the end, Rabi and his colleagues were able to observe perfectly the separated resonance peaks of the two nuclei of lithium and chlorine and just a year later, as also promised in the conclusions of the first article, they were able to update the method using some new atoms, describing with more details the experimental apparatus used by the team:
(4):