After the first detection of gravitational waves from merged black holes,
LIGO detected a new signal:
The two LIGO gravitational wave detectors in Hanford Washington and Livingston Louisiana have caught a second robust signal from two black holes in their final orbits and then their coalescence into a single black hole. This event, dubbed GW151226, was seen on December 26th at 03:38:53 (in Universal Coordinated Time, also known as Greenwich Mean Time), near the end of LIGO's first observing period ("O1"), and was immediately nicknamed "the Boxing Day event".
A
paper (
pdf) about this observation was published on
Physical Review Letters:
The inferred component masses are consistent with values dynamically measured in x-ray binaries, but are obtained through the independent measurement process of gravitational-wave detection. Although it is challenging to constrain the spins of the initial black holes, we can conclude that at least one black hole had spin greater than 0.2. These recent detections in Advanced LIGO's first observing period have revealed a population of binary black holes that heralds the opening of the field of gravitational-wave astronomy.
About the first observation, GW150914, you can read
Binary Black Hole Mergers in the first Advanced LIGO Observing Run and
Dynamical formation of the GW150914 binary black hole (
sci-hub) (or
Black hole pairs spat out of mosh pits make gravitational waves).
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS